On the Amicability of Orthogonal Designs
نویسندگان
چکیده
Although it is known that the maximum number of variables in two amicable orthogonal designs of order 2n p, where p is an odd integer, never exceeds 2n+2, not much is known about the existence of amicable orthogonal designs lacking zero entries that have 2n+2 variables in total. In this paper we develop two methods to construct amicable orthogonal designs of order 2n p where p odd, with no zero entries and with the total number of variables equal or nearly equal to 2n+2. In doing so, we make a surprising connection between the two concepts of amicable sets of matrices and an amicable pair of matrices. With the recent discovery of a link between the theory of amicable orthogonal designs and space-time codes, this paper may have applications in space-time codes. AMS Subject Classification: Primary 05B20.
منابع مشابه
Some Optimal Codes From Designs
The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.
متن کاملSome New Properties of the Searching Probability
Consider search designs for searching one nonzero 2- or 3-factor interaction under the search linear model. In the noisy case, search probability is given by Shirakura et al. (Ann. Statist. 24(6) (1996) 2560). In this paper some new properties of the searching probability are presented. New properties of the search probability enable us to compare designs, which depend on an unknown parameter ?...
متن کاملConstructions for Hadamard matrices using Clifford algebras, and their relation to amicability / anti-amicability graphs
It is known that the Williamson construction for Hadamard matrices can be generalized to constructions using sums of tensor products. This paper describes a specific construction using real monomial representations of Clifford algebras, and its connection with graphs of amicability and anti-amicability. It is proven that this construction works for all such representations where the order of th...
متن کاملProposed Procedure for Estimating the Coefficient of Three-factor Interaction for 2^p 3^m 4^q Factorial Experiments (TECHNICAL NOTE)
Three-factor interaction for the two-level, three-level, and four-level factorial designs was studied. A new technique and formula based on the coefficients of orthogonal polynomial contrast were proposed to calculate the effect of the three-factor interaction The results show that the proposed technique was in agreement with the least squares method. The advantages of the new technique are 1) ...
متن کاملConstructions for Hadamard matrices, Clifford algebras, and their relation to amicability / anti-amicability graphs
It is known that the Williamson construction for Hadamard matrices can be generalized to constructions using sums of tensor products. This paper describes a specific construction using real monomial representations of Clifford algebras, and its connection with graphs of amicability and anti-amicability. It is proven that this construction works for all such representations where the order of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008